CLASS ROOM TEST

Ma	arks : 40	SYJC March' 19 Subject : MATHS – II Insurance & Annuity / Demography	Duration : 1.5 Hours
Q.1. (1)	Attempt any Two Property value		(06
	Policy value	$=\frac{4}{5} \times 5,00,000$	
	Rate of Premiu	= ₹ 4,00,000 m = 5%	
		m = ₹ 4,00,000 × <u>5</u> 100	
	Premium amount	is ₹ 20,000	
	Commission at 39	% is 20,000 × 3 = ₹ 600.	
(2)	Value of the car is Insured Value = ₹ Damage = ₹ 80,0 Claim = $\frac{\text{Insured}}{\text{Property}}$ = $\frac{150000}{180000}$ = ₹ 66,667	1,50,000 00 <u>value</u> ×loss value ×80,000	<i>1</i> .
(3)	 ∴ 2,00,000 = ∴ 2,00,000 = ∴ 2,00,000 = ∴ 2,00,000 = ∴ C = 	4 years $\int_{0}^{1} = 0.10$ $\frac{C}{0.1}[(1 + 0.1)^{4} - 1]$ $\frac{C}{0.1}[(1.1)^{4} - 1]$ $\frac{C}{0.1}[1.4641 - 1]$	

Mr. Rana should invest ₹ 43094.16 at the end of each year for 4 years to get ₹ 2,00,000 at the end of 4 years.

(4) Given A = ₹ 20,500 C = ₹ 10,000, n = 2 year To find r Using accumulated value A A = $\frac{C}{i}[(1 + i)^n - 1]$ $\therefore 20,500 = \frac{10000}{i}[(1 + i)^2 - 1]$ $\therefore \frac{20500}{10000} = \frac{1 + 2i + i^2 - 1}{i}$ $\therefore 2.05 = \frac{2i + i^2}{i}$ $\therefore 2.05 = 2 + i$ $\therefore i = 2.05 - 2$ $\therefore i = 0.05$ $\therefore i = \frac{r}{100}$ $\therefore 0.05 = \frac{r}{100}$

 \therefore rate of interest is 5% p.a.

Q.2. Attempt any Four : (3 marks each) :

(1) Given C = ₹ 1,000, r = 10% p.a. n = 3 years i = $\frac{r}{100} = \frac{10}{100} = 0.1$

Using the formula for accumulated value A' of an annuity, due we get C(1+i)

$$A' = \frac{C(1+1)}{i} [(1+i)^{n} - 1]$$

$$\therefore A' = \frac{1000(1+0.1)}{0.1} [(1+0.1)^{3} - 1]$$

$$\therefore A' = \frac{1000(1.1)}{0.1} [1.331 - 1]$$

$$= 11000(0.331)$$

$$= 3641$$

∴ Accumulated value is ₹ 3641

Property Value = ₹ 1,00,000
 Policy Value = ₹ 70,000
 Rate of premium = 0.4%
 Premium = 0.4% of policy x

$$\therefore$$
 Premium = 0.4% of policy value

∴ The total premium is = ₹ 280 Now claim = loss x Policy value property value

2

(12)

 $= 60,000 \times \frac{70,000}{1,00,000}$ = ₹42,000 Total value of the cargo = ₹ 1,00,000 Value of the cargo completely destroyed = ₹ 60,000 ∴Remaining cargo =₹40,000 Loss on remaining value of the cargo = 40% of the remaining value of the cargo $= \frac{40}{100} \times 40,000$ = ₹ 16,000 ∴ Total loss = 60,000 + 16,000 = ₹76,000 Claim = loss x $\frac{Policy value}{property value}$ $= 76,000 \times \frac{70,000}{1,00,000}$ = ₹ 53,200 (3) Loss = ₹ 1,20,000. \therefore Claim = loss x $\frac{\text{Policy value}}{\text{property value}}$ 60,000 Claim from company X = 1,20,000 X2,00,000 = ₹36,000 40,000 Claim from company Y = 1,20,000 X2,00,000 = ₹24,000 50,000 Claim from company Z = 1,20,000 X2.00.000 = ₹ 30,000. (4) Policy Value = ₹70,000 Rate of premium = ₹ 56.50 per thousand per annum $\therefore \text{ Amount of premium} = \frac{56.50}{1000} \times 70,000$ = ₹ 3,955. He pays premium for 15 year. \therefore Total premium paid = 3,955 X 15 = 59,325 Rate of bonus is ₹ 6 per thousand per annum of the policy value. : On 70,000 policy value bonus for 1 years = 6×70 = ₹420 \therefore Bonus for 15 years = 420 \times 15 = ₹6,300 : When policy matures, The person gets ₹ = 70,000 + 6,300 = ₹ 76,300 ∴ Benefit = 76,300 – 59,325

(04)

= ₹16,975

Since ₹10,000 is deposited at the end of every six months. (5) \therefore It is an immediate annuity. C = ₹ 10,000 Rate of interest is 10% p.a. \therefore for six months it is 5%. ∴ r = 5% \therefore i = $\frac{r}{100} = \frac{5}{100} = 0.05$ \therefore No. of half years of 2 years = 2 x 2 = 4 ∴ n = 4 Using formula accumulate value A $A = \frac{C}{i}[(1 + i)^{n} - 1]$ $\therefore A = \frac{10000}{0.05} [(1 + 0.05)^4 - 1]$ = 2,00,000 [1.2155 -1] = 2,00,000 [0.2155] = 43,100. Accumulated amount at the end of 2 years is ₹ 43,100. ... Q.3. Attempt any One : (4 marks each) : Policy value = ₹ 100000. (1) Period of policy = 20 years. Rate of premium = ₹ 76 per thousand \therefore amount of premium = $\frac{76}{1000} \times 100000$ = ₹7600 He pays for 10 annual premium ∴ total premium paid = ₹ (10 × 7600) = ₹76000 Rate of bonus = ₹ 7 per thousand p.a. of the policy value. ∴ on policy of ₹ 100000 bonus for one year = $\frac{7}{1000}$ × 100000 = ₹ 700 ∴ bonus for 10 years = ₹ 10 × 700 = ₹7000 He dies after paying 10 annual premiums. : his nominee will get amount = Policy value + Bonus earned = ₹ (100000 + 7000) = ₹ 107000. (2) The value of 3000 bedsheets = ₹ 480000. Insured value = $\mathbf{R} \left(480000 \times \frac{3}{7} \right)$ = ₹ 1440000

4

Cost of one bedsheet = ₹ $\frac{480000}{3000}$ = ₹ 160 Let x bedsheets be damaged in the rainy season. Cost of x bedsheets = ₹ 160x ∴ the value of damaged bedsheets = $160x \times \frac{40}{100} = ₹ 64x$ \therefore loss = ₹ 64x for x damaged bedsheets. Now, claim = $\frac{\text{Insured value}}{\text{Total value}} \times \text{Loss}$ 1440000 $24000 = \frac{7}{480000} \times 64x$ \therefore 24000 = $\frac{1440000 \times 64x}{7 \times 480000}$ $\therefore \quad 24000 = \frac{3 \times 64x}{7}$ 24000 × 7 = 192x $x = \frac{24000 \times 7}{192}$ *.*.. ... x = 875 Hence, the number of damaged bedsheets is 875. . . \sim

(3) Here, C = ₹ 10000, A = ₹ 20500, n = 2, r =
Now, A =
$$\frac{C}{i}[(1 + i)^n - 1]$$

 $\therefore 20500 = \frac{10000}{i}[(1 + i)^2 - 1]$
 $\therefore \frac{20500}{10000} = \frac{(1 + i)^2 - 1}{i}$
 $\therefore 2.05 = \frac{1 + 2i + i^2 - 1}{i}$
 $\therefore 2.05 = \frac{i(2 + i)}{i}$
 $\therefore 2.05 = 2 + i$
 $\therefore 2.05 - 2 = i$
 $\therefore i = 0.05$
Now, $i = \frac{r}{100}$
 $\therefore r = 0.05 \times 100$
 $\therefore r = 5\%$
Hence, the rate of interest is 5%.

?

(04)

Q.4. Attempt Any Two of the following : (2 marks each)

 $CDR = \frac{\sum D_i}{\sum P_i} \times 1,000$ 1. For population A $\sum D_1 = 170 + 115 + 490 + 630$ = 1405 $\sum P_1 = 13 + 20 + 52 + 22$ = 107 (in thousands) .: CDR for population A denoted by CDRA is $CDR_A = \frac{\sum D_i}{\sum P_i} \times 1,000$ $=\frac{1405}{107000} \times 1,000$ = 13.13 per thousand. For population B : $\sum D_i = 510 + 130 + 570 + 680$ = 1890 $\sum P_i = 15 + 35 + 54 + 23$ = 127 (in thousands) ∴ CDR for population B denoted by CDR_B is, $CDR_{B} = \frac{\sum D_{i}}{\sum P_{i}} \times 1,000$ $=\frac{1809}{127000} \times 1,000$ = 14.88 per thousand. Observe that population A is more healthy than population B as $CDR_A < CDR_B$. 2. $\sum D_i$ = 1250 + 1000 + 1750 + 1680 5680 = 25 + x + 28 + 15 $\sum P_i$ = 68 + x (in thousands) = CDR = 56.8 ΣD_{i}

$$CDR = \frac{}{\sum P_i} x 1000$$

$$56.8 = \frac{5680}{(68 + x)1000} x 1000$$

$$3862.4 + 56.8x = 5680$$

$$56.8x = 5680 - 3862 - 4$$

$$56.8x = 1817.6$$

$$x = 1817.6$$

$$56.8$$

$$x = 32$$

6

3.

CLASS ROOM TEST

Age – Group	Population	No of	SDR
(years)	(in' 000)	Deaths	$SDR = \frac{D}{P} \times 1000$
0 – 30	20	32	$\frac{32}{20000}$ x 1000=1.6
30 – 60	30	60	$\frac{60}{30000}$ x 1000=2
60 - 80	40	88	$\frac{88}{40000}$ x 1000=2.2
Above 80	10	60	$\frac{60}{10000} \times 1000 = 6$

4.
$$l_0$$
, = 100, q_0 = 0.10, $q_1 = \frac{1}{9}$, $p_2 = \frac{15}{16}$

We have,
$$q_x = \frac{d_x}{l_x}$$

 $\therefore q_0 = \frac{d_0}{l_0}$
 $\therefore 0.10 = \frac{d_0}{100}$
 $\therefore d_0 = 10$
 $q_1 = \frac{d_1}{l_1}$
 $\therefore \frac{1}{9} = \frac{d_1}{90}$
 $\therefore d_1 = 10$
Now, $d_x =, l_x, - l_{x+1}$
 $\therefore d_0 = l_0 - l_1$
 $\therefore 10 = 100 - l_1$
 $\therefore l_1 = 100 - 10 = 90$
Now, $d_1 =, l_1, -l_2$
 $\therefore l_2 = 90 - l_2 = 80$

Q.5. Attempt Any four of the following : (3 marks each) **1.** $l_{92} = 59, L_{92} = 46, p_{92} = ?$

$$L_{x} = \frac{l_{x} + l_{x+1}}{2}$$

$$\therefore L_{92} = \frac{l_{92} + l_{93}}{2}$$

$$\therefore 46 = \frac{59 + l_{93}}{2}$$

$$\therefore (2 \times 46) - 59 = l_{93}$$

$$\therefore 92 - 59 = l_{93}$$

$$\therefore l_{93} = 33$$

$$p_{x} = \frac{l_{x+1}}{l_{x}}$$

$$\therefore P_{92} = \frac{l_{93}}{l_{92}} \qquad \therefore P_{92} = \frac{33}{59}$$

$$\therefore P_{92} = 0.559322$$

(12)

Age group	Distri	ct A	District B		
(years)	No. of persons No. of Death		No. of persons	No. of Deaths	
	(in '000)		(in '000)		
0 – 15	1	20	2	50	
15 – 55	3	30	7	70	
60 & above	2	40	1	25	
Total	$\sum P_i$	$\sum D_i$	$\sum P_i$	$\sum D_i$	
	= 6	= 90	= 10	= 145	

District A:
$$CDR_A = \frac{\sum D_i}{\sum P_i} = \frac{90}{6000} \times 1000$$

 \therefore CDR_A = 15 per thousand

District B :

 $CDR_{_B} = \frac{\sum D_{_i}}{\sum P_{_i}} = \frac{145}{100} \times 1000$

 \therefore CDR_B = 14.5 per thousand

Comparison : Since $CDR_B < CDR_A$, the population of District B is more healthier.

Age group	Том	/n l	Town II		
(years)	Pi	Di	Pi	Di	
0 - 10	1,500	45	6,000	150	
10 – 25	5,000	30	6,000	40	
25 – 45	3,000	15	5,000	20	
45 & above	500	22	3,000	54	
Total	$\sum P_1 = 1,000$	$\sum D_1 = 112$	$\sum P_1 = 20,000$	$\sum D_{1} = 264$	

Town I :

$$CDR_{I} = \frac{\sum D_{i}}{\sum P_{i}} x 1,000 = \frac{112}{10,000} x 1,000$$

∴ CDR_I = 11.2 per thousand

Town II :

 $CDR_{II} = \frac{\sum D_i}{\sum P_i} x 1,000 = \frac{264}{20,000} x 1,000 = \frac{132}{10}$ ∴ CDR_{II} = 13.2 per thousand Comment : CDR_I < CDR_{II}

2.

4.

Age group	То	wn A	Town B		
(years)	Population	No. of Deaths	Population	No. of Deaths	
	(in '000)		(in '000)		
0 – 5	25	550	20	440	
5 – 15	40	280	30	210	
15 - 35	60	720	40	480	
Above 35	15	525	30	1050	
Total	Total $\sum P_1$ $\sum D_1$		$\sum P_1$	$\sum D_1$	
	= 140	= 2075	= 120	= 2180	

Town A :

 $CDR_{A} = \frac{\sum D_{i}}{\sum P_{i}} = \frac{2075}{140000} \times 1000$ $\therefore CDR_{A} = 14.82 \text{ per thousand}$

$$CDR_{B} = \frac{\sum D_{i}}{\sum P_{i}} = \frac{2180}{120000} \times 1000$$

∴ CDR_{B} = 18.17

Comment : Since, $CDR_A < CDR_B$ the population of town A is more healthier than the population of town B.

5. $l_{26} = 9046, \ l_{27} = 8898 \text{ and } T_{26} = 36,000,$ $L_x = \frac{l_x + l_{x+1}}{2}$ $\therefore L_{26} = \frac{l_{26} + l_{27}}{2} = \frac{9046 + 8898}{2}$ $= \frac{17944}{2}$ $\therefore L_{26} = 8972$ $T_x = L_x = T_{x+1}$ $\therefore T_{26} = L_{26} + T_{27}$ $\therefore 36,000 = 8972 + T_{27}$ $\therefore 36,000 - 8972$ $\therefore T_{27} = 36,000 - 8972$ $\therefore T_{27} = 27028$ $e^0_x = \frac{T_x}{l_x}$ $\therefore e^{0}_{26} = \frac{T_{26}}{l_{26}} = \frac{36,000}{9,046}$ $\therefore e^{0}_{26} = 3,9796$ $L_{26} = 8972, \ T_{27} = 27028, e^{0}_{26} = 3,9796$

(04)

Q.6. Attempt Any One of the following: (4 marks each)

1. $d_x = l_x = l_{x+1}$ $d_0 = l_0 - l_1$ = 1,000 - 940 = 60 etc. $q_x = \frac{d_x}{l_x}$ $q_0 = \frac{d_0}{l_0}$ $= \frac{60}{1,000}$ = 0.06 etc. $L_x = \frac{l_x + l_{x+1}}{2}$ $L_0 = \frac{l_0 + l_1}{2}$ $= \frac{1,000 + 940}{2}$ = 970, etc.

The complete life table for the parrots is given below:

Age x	<i>l</i> x	D _x = <i>l</i> _x - <i>l</i> _{x+1}	$\mathbf{q}_{\mathbf{x}} = \frac{d_{\mathbf{x}}}{l_{\mathbf{x}}}$	P _x =1-q	$\mathbf{L}_{\mathbf{x}} = \frac{I_{\mathbf{x}} + I_{\mathbf{x}+1}}{2}$	T _x =	$e_x^0 = \frac{T_x}{I_x}$
0	1,000	60	0.0600	0.94	970.0	2835.	2.8350
1	940	160	0.1702	0.8298	860.0	1865.0	1.9840
2	780	190	0.2435	0.7565	685.0	1005.0	1.2885
3	590	565	0.9576	0.0424	307.5	320.0	0.5424
4	25	25	1.0000	0	12.5	12.5	0.5000
5	0	-		-	-	-	-

2.

Х	0	1	2	3	4	5
dx	10	10	20	30	30	-
qx	0.10	0.11	0.25	0.50	1.0	-
px	0.90	0.89	0.75	0.50	0	-
Lx	95	85	70	45	15	-

3.

X	Lx	dx	qx	рх	Lx
0	4,000	1,000	0.25	0.75	3,500
1	3,000	2,000	0.66	0.34	2,000
2	1,000	800	0.80	0.20	600
3	200	160	0.80	0.20	120
4	40	40	1.00	0	20
5	0	-	-	-	-

####